NEACT Southern Division Meeting Steaming into the Future March 24, 2018

Historical Scientific Data Excerpts from SSHSA Archives Table of Contents

p. 1

Variation in CO₂ with different percentages of excess air and different fuels (Table 29)

Percent compositions of elements (or trace gases) in fuels and percent CO₂ produced with relative percent volumes of air.

pp. 2-3

Tests of Babcock & Wilcox Marine Boilers using Coal Fuel (Table 29A)

Contains fuel masses, consumption rates, water evaporation masses and rates, flue gas analysis, and heat balance. Units are lbs, °F, BTU.

p. 4

Ignition temperatures (Table 25)

Temperatures in °F to ignite coal and flammable gases.

p. 5

Narrative. Effects of element additives on steel properties discussed in the context of steam boilers.

p. 6

Explosion Chart (Fig. 1)

Chart showing numbers of steam boiler explosions and casualties from 1882-1923.

p. 7

Exercises. Practice problems and table involving fuel gas compositions and masses.

pp. 8-12

Discussion of substances relevant to boiler water and tables and graphs related to their solubilities.

TABLE 29

VARIATION IN CO2 WITH DIFFERENT PERCENTAGES OF EXCESS AIR AND DIFFERENT FUELS

A mile of the state of the stat	The second secon		Class of Fuel	f Fuel		
Constituent	Coal*	Wood*	0i1*	Natural Gas†	By-product Gas†	Blast Furnace Gast
	70.86	50.31	84.00		•	
) }	5.02	6.20	12.70	1.82	53.00	3.50
10	4.27	43.08	1.20	ó.35	•	•
Z	1.86	0.04	1.70	3.40	12.10	58.60
' ထ	1.18	•	0.40		•	•
Ash	7.81	0.37			•	
00		•	•	0.45	6.00	25.40
CO			•	0.22	0.75	12.50
CH,	•	•		93.33	28.15	•
C,H,	•		•	0.25		
H ₂ S				0.18	•	•
						,
Excess Air Per Cent	·	Percentage of (Percentage of $\mathrm{CO_2}$ Corresponding to Different Amounts of Excess Air	to Different Amount	ts of Excess Air	
O	18.43	20.10	15.40	11.65	9.36	25.08
20	15.29	16.72	12.69	9.54	7.67	22.97
40	13.06	14.31	10.79	8.07	6.49	21.20
8.	11.40	12.51	9.38	6.69	5.63	19.61
&	10.11	11.12	8.30	6.17	4.97	18.38
100	60.6	10.00	7.45	5.52	4.48	17.20
			_			

^{*}Analysis by weight. †Analysis by volume,

TABLE 29 $_{\lambda}$ TESTS OF BABCOCK & WILCOX MARINE BOILERS USING COAL FUEL

Date Location Type of Babcock & Wilcox marine boiler	S. S. "Čr	ist, 1922 escent City'' ch tube	U. S. S. "Wyo	June, 1910 ming" Test Boiler 2-inch tube	, Bayonne, N. J
Duration, honrs State of weather Type of draft Method of firing Kind of fuel Total heating surface, square feet Grate surface, square feet	9 Clear Natural Hand Semi-Bitumi 5366	9 Clear Natural Hand nous (Detour) 5366 140	24.06 Clear Natural Hand Poo 2571.39 57.89	2.4 Partly Clear Forced Hand cahontas, Hand Pi 2571-39 57-89	Clear Forced Hand cked 2571.39 57.89
Average Pressures					1
Boiler steam pressure by gauge, pounds Starboard Port	 234.4 233.8 29.22	236.4 236.8 29.26	202.0 30.06	201.6 	200,4
AVERAGE TEMPERATURES-DEGREES FAHRENHEIT					
Fireroom Hotwell Feed water leaving heater Boiler exit gases at uptake	85.23 124.0 184.33 532.0	90.7 124.0 195.4 538.0	93.7 211.6 491.0	94.0 204.1 628.0	106.0 194.4 659.0
FUEL .					
Weight of coal as fired, pounds Moisture in coal, per cent Weight of dry coal consumed, pounds Weight of ash and refuse, pounds. Weight of combustible consumed, pounds Refuse in dry coal, per cent	26691.0 2.49 26043.4 2000.0 24043.4 7.68	27598.5 2.30 26963.7 1945.5 25018.2 7.21	21200.0 0.88 21013.0 1261.0 19752.0 6.00	57700.0 1.06 57088.0 2477.0 54611.0 4.34	12200.0 0.75 12108.0 1035.0 11073.0 8.55
FUEL PER HOUR	1			j	
Coal consumed per hour, pounds	2965.6 2893.5 2669.6 21.18 20.66 19.08 .55 .54	3049.6 2996.0 2780.0 21.78 21.38 19.83 .57 .55 .52	881.0 873.0 821.0 15.22 15.08 14.18 .343 .349	2404.0 2379.0 2275.0 41.53 41.10 39.30 -935 .925 .885	4066.0 .1036.0 .3691.0 .70.24 .63.77 .581 1.569

TESTS OF BABCOCK & WILCOX MARINE BOILERS USING COAL FUEL-CONTINUED

Water				1	
Total weight of water to boilers, pounds	242711. 1.0812 262419.	246743. 1.0698 263965.7	228095. 1.052 239956.	612698. 1.060 649460.	106504. 1.069 113853.
Water Per Hour					
Water evaporated per hour, pounds	26967.9 291 57.7 208.27 5.44	.27415.9 29329.5 209.49 5.47	9480. 9974. 172. 3.88	25530. 27060. 468. 10.52	35501. 37951. 656. 14.76
ECONOMIC RESULTS					
Water actually evaporated per pound of coal as fired, pounds Equivalent evaporation from and at 212° F, per lb. of coal as fired, lbs. Equivalent evaporation from and at 212° F, per lb. of dry coal, lbs. Equivalent evaporation from and at 212° F, per lb. of combustible, lbs. Efficiency: Boiler including grate	9.09 9.83 10.08 10.92 71.31	8.99 9.62 9.78 10.54 71.37	10.76 11.32 11.42 12.15 72.55	10.62 11.26 11.38 11.89 72.28	8.73 9.33 9.40 10.28 59.73
FLUE GAS ANALYSIS—TOP 3RD PASS			:		
Carbon dioxide (CO $_2$)	12.50 5.48 0.00 82.02	12.28 6.28 0.00 81.44	13.20 4.20 0.50 82.10	13.60 3.90 0.80 81.70	11,60 5.07 1.09 82.24
ULTIMATE ANALYSIS OF DRY COAL—PER CENT					
Carbon Hydrogen Oxygen and nitrogen Ash Sulphur Heat value per pound of dry coal, B. t. u. Combustible in ash, per cent	75.88 5.41 11.74 6.45 .52 137(8. 38.86	75.88 5.41 11.74 6.45 .52 13297. 48.10	87.51 4.74 3.67 3.38 .70 15273. 31.93	87.51 4.74 3.67 3.38 .70 15273. 60.99	87.51 4.74 3.67 3.38 .70 15273. 70.72
HEAT BALANCE	B. t. u. Per Cer	B. t. u. Per Cer	B. t. u. Per Cent	B. t. u. Per Cent	B. t. u. Per Cent
Heat absorbed by boiler Loss due to moisture in fuel Loss due to moisture formed by burning of hydrogen Loss due to heat carried away in dry gases Loss due to incomplete combustion of carbon Loss due to unconsumed carbon in ash Loss due to radiation and unaccounted losses Total	9779. 71.3 302: 607. 4.4 1661. 12.1 0. 0.0 435. 3.1 1206. 8.7 13718. 100.0	2 29	2 10.84 .07 5 521.00 3.41 5 1503.00 9.84 0 317.00 2.08 2 280.00 1.83 1 560.16 10.22	13.72 .09 547.00 3.58 1909.00 12.50 479.00 3.14 386.00 2.53	9,71 .06 548.00 3.59 2134.00 13.97 711.00 4.65 883.00 5.78 1865.29 12.22

Less the exercise to be exceed and in this table, it is necessary that the annual comparison to the exact amount required and be annual of expression property to another mice estates a distinction between perfect and complete when all excess of exygen over the products and excess of exygen in the products are transfer complete when complete without the presence of exists copolical complication as only perfect when complete without the presence of exacts that the products are also said to excess only perfect when complete without the presence of exacts that the products are also said to exact the excess of experiments.

TABLE 21
CHEMICAL BLACTIONS OF COMBUSTION

Cartaga the Same	
Carbon (to CO) Carbon (to CO) Carbon Monoxide Hydrogen Sulphur (to SOs) Sulphur (to SOs) Methane Acctylene Ethylene Hydrogen Sulphide	$\begin{array}{c} a \Gamma + O_3 - a CO \\ a C + a O_3 - a CO_2 \\ a C O + O_3 - a CO_2 \\ a H_3 + O_7 - a H_3 O \\ S + O_7 - SO_2 \\ a S + 3O_7 - a SO_3 \\ C H_4 + a O_2 - CO_2 + a H_2 O \\ 2 C_2 H_2 + 5O_2 - 4 CO_2 + a H_2 O \\ C_2 H_4 + 3O_2 - a CO_2 + a H_2 O \\ a C_2 H_6 + 7O_7 - 4 CO_2 + 6 H_2 O \\ a H_2 S + 3O_7 - a H_2 O + 2 SO_2 \end{array}$

oxygen in the products resulting of combustion that is neither complete nor perfect is that of carbon monoxide. Since carbon monoxide is capable of a further combination with oxygen to form viously incomplete. Combustion is obtained is complete but not perfect is ing of excess air.

IGNITION TEMPERATURE
While, as stated, the speed of combustion is primarily dependent upon the affinity of the combustible

for combination with oxygen, it is also dependent upon the conditions under which combustion takes place, and the chief of such conditions is that of temperature. Introducing a combustible into the presence of oxygen does not of necessity result in combustion.

Every combustible substance has a temperature called its "ignition temperature," to which it must be brought be-

TABLE 25
IGNITION TEMPERATURES

Combustible Substance	Molecular Symbol	Ignition Temperatu Degrees Fahrenhe
Sulphur	S_{2}	470 766 870 925 900 1000 1022 1130 1202

fore it will unite with oxygen in chemical combination, and below which such combination will not take place. This ignition temperature must exist with oxygen present or no combustion will occur. The ignition temperature of various fuels and of the combustible constituents of such fuels is given in Table 25.

The temperature of ignition of the gases of a coal varies and is higher than the ignition temperature of the fixed carbon constituent. The ignition temperature of coal is that of its fixed carbon content, the gaseous constituents being ordinarily distilled off, though not ignited, before this temperature is reached.

iron, it then develops greater strength therein. However, to insure this, correct proportions must be maintained, Increasing the carbon content up to a certain maximum augments the strength. But beyond this maximum, the increase of carbon, the strength decreases with the increase of carbon content

EXAMPLE.—Mild steel that contains 0.1 per cent. of carbon has a tensile strength of about 50,000 lb. per sq. in. With twelve times this quantity or 1.2 per cent. of carbon, the tenacity, if tempered is in which is maked in maked creased to nearly 140,000 lb. per sq. in., which is probably the upper limit for carbon steel. Increasing the percentage of carbon above this value results in a proportionate drop in the tenacity. With 2.0 per cent its unit strength is about 90,000 lb. Further gradual increase in the carbon component causes the material to become brittle.

123. Carbon contributes to the hardness of boiler-plate, The hardness increases with the increase of carbon content, This quality is especially desirable in flues and tubes and in the sheets of fire-boxes and combustion chambers. In these locations the metal must withstand the abrading action of the cinder-laden gas currents. There is, however, a degree of hardness which marks the maximum limit. If an attempt is made to obtain harder metal, other very necessary qualities of good boiler-plate will be sacrificed.

124. Excessive carbon tends to destroy ductility of the material. Its malleability may also be thereby impaired to a ruinous extent. Likewise, a plate containing an excess of carbon will be lacking in toughness. Sufficient carbon to make the plate guite hard will also make it brittle.

125. Good boiler-plate steel contains just enough carbon to insure proper melting in the furnace. This consideration amply gages the amount of carbon necessary to produce a satisfactory blending of the desired properties. Generally, the quantity of carbon is less than 0.25 per cent. With this small carbon content, practically all liability of the material to harden and crack under a stress, which is caused by a sudden and wide change of temperature, is eliminated.

126. Phosphorus is undesirable in boiler-plate steel. Although its presence makes a steel strong and hard, and thus would seem desirable, these qualities are secured best through the medium of carbon. The reason is that phosphorus tends MATERIALS IN STEAM BOILER CONSTRUCTION

to make the material cold-short, that is brittle, when cold. to make the phosphorous is particularly weak against Steel containing much phosphorous is particularly weak against Sheel comments weak against shork and vibratory stresses. On this account, it may be shock and the most harmful of the ingredients in steel boilerplate. It is for this reason that Bessemer process steels are plate. The method does not remove undesirable for boiler-making. The method does not remove undestrained the phosphorus, which was originally in the pig

127. Sulphur is detrimental to steel in various ways. Its principal effect is to impair the tenacity and duetility of the plate and to make it hot-short, or brittle and difficult to

work when hot. 128. Silicon In Mild Steel Makes It Harder.—There is but a small quantity present. Even this increases the hardness slightly, but without diminishing toughness or ductility and without affecting appreciably its tensile strength. might, therefore, be regarded as a beneficial ingredient.

129. Manganese In Mild Steel Is A Hardening Agent.-Steel which contains a considerable proportion of this element acquires a peculiar brittleness and hardness which makes it difficult to cut with machine tools. Manganese has, however, a neutralizing effect on sulphur. It combines with sulphur in the steel to form manganese sulphide. This component is less objectionable than the iron sulphide that would otherwise be formed. The presence of manganese might, therefore, be regarded as advantageous.

130. Chemical Properties For Steels Are Specified By The Boiler Codes.—The standard rules, those of the American Society of Mechanical Engineers for example, stipulate certain chemical properties for steels of various grades for plates, stays, rivets, and the like. (Table 131.)

131. Table Showing the Uses, Chemical Properties and Physical Properties of the Various Grades of Steel and Iron as Specified in the A.S.M.E. Code, 1918.

Fig. 1,-Explosion Chart.

The same method may be used to find the lower heating value per pound when the weight composition is given. The method, per pound wow.

however, does not apply in the ease of the higher heating value

The following table gives the approximate composition by volume of certain fuel gases.

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							a volume of
1. Blast furnace gas. 0.04 0.27 0.27 0.04 0.27 0.03 0.03 0.10 0.59 2. Water gas. 0.50 0.45 0.45 0.03 0.59 0.51		H_2	CO	CH ₄	Call.		
4. Carbureted water gas. $\begin{vmatrix} 0.30 \\ 0.02 \end{vmatrix} \begin{vmatrix} 0.27 \\ 0.01 \end{vmatrix} \begin{vmatrix} 0.25 \\ 0.93 \end{vmatrix} \begin{vmatrix} 0.15 \\ 0.005 \end{vmatrix} \begin{vmatrix} 0.03 \\ 0.01 \\ 0.005 \end{vmatrix} \begin{vmatrix} 0.03 \\ 0.02 \\ 0.005 \end{vmatrix}$	producer gas	0.15 0.50	$egin{array}{c} 0.22 \ 0.45 \ \end{array}$	0.03	• • • •	• • • • •	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

1. Find the composition by weight of each of these gases.

2. For each of the gases find the volume of air required for the combustion of 1 cu. ft. of the gas.

3. Using 15 per cent. excess air, make up schedules of the mixture of fuel and air and of the mixture of products. Show the composition of each mixture in mols and in pour.ds.

4. From these schedules calculate the constants B_m of the original mixtures and the constants B_p of the mixtures of the products.

Ans.
$$\begin{cases} 1. \ B_m = 53.82, \ B_p = 49.33 \\ 3. \ B_m = 61.40, \ B_p = 53.35 \\ 4. \ B_m = 56.42, \ B_p = 54.36 \end{cases}$$

5. Derive expressions for the specific heats c_p and c_p per pound for all the mixtures.

6. Find the lower heating value of each gas per cubic foot under standard conditions.

Ans.
$$\begin{cases} 1. & 98 \text{ B. t. u.} \\ 2. & 140 \text{ B. t. u.} \\ 3. & 285 \text{ B. t. u.} \\ 4. & 625 \text{ B. t. u.} \\ 5. & 858 \text{ B. t. u.} \end{cases}$$

7. Find the contraction in volume of each gas when burned with 15 per cent excess air.

8. From the composition of the mixture of products determine in each case the partial pressure of the H₂O constituent, assuming that the pressure of the mixture is 14.7 lb. per sq. in. Determine the temperature at which condensation of H₂O begins.

9. From the general expression for the heat of combustion H_p show that H_p has a maximum or minimum value at some temperature. Derive an expression expression from which the temperature at which the maximum or minimum occurs maximum. occurs may be calculated.

ishment from time to time. Indeed it does, for being a contact process, the porosity of the seclite is important. As the pures clor, it loses efficiency till replacement is necessary. For this reason turbid cloudy waters must be filtered before softening.

"close", often incompable of taking core of full demands, especially as the efficiency of the zeolite drops, and though they are capable of discharging "zero" water, frequently fail to do this.

Because of their expense, very hard water cannot be handled cheaply. It must first be softened by lime-soda, filtered, and then further softened - if necessary with zeolite. They likewise frequently discharge water with residual hardness and fail to consider the soluble salts liberated and the corrosiveness of the water; hence supplementary treatment is indicated despite their use when the object is water for steam generation. It can be said, however, that where the object is soft water for process, there is nothing better than a properly operated zeolite softener.

Boiler Compounds

It is not possible to consider these in all their many forms and variations.

The more common ingredients and their merits, if any, can be briefly considered.

Caustic Soda - (NaOH):- This is good for precipitating magnesium compounds and raising the alkalinity. The evil is that it fails to benefit the calcium and promiscuous use leads to excessive alkalinity and embrittlement.

Soda ...sh - (Na₂CO₃):- This would be better in general use were it not for the fact that it decomposes to caustic soda and has its failings as a consequence. Under limited pressures it serves some good purpose.

Sodium Silicate (indefinite formula):- This is possessed of no virtue whatsoever, uning to rather than alleviating the evils calling for correction.

With calcium and magnesium it forms hard, dense, firmly adhering deposits of the corresponding silicate, not unlike these deposits found in nature in rock deposits. The claim of being a metal treatment is more imaginary than real.

- Sodium Aluminate (formula indefinite):- Forms a floc-like combination with calcium and magnesium compounds in intimate mixture with hydrated alumina - a coagulating, colloidal floc. Being hydrated, it loses water and reverts to the dehydrated form of A $_{2}\mathrm{O}_{3}$ (aluminum oxide or bauxite).
- Tri Sodium Phosphate (NagPO4):- Best all around precipitant. Tends to deposit in feed lines. orks very well with supplemental colloidal coagulant.
- Di Sodium Phosphate (Na 2HFO4):- Forms Na 3PO4 with alkali. Has all the properties of NagPO4 to which it should be converted either with alkali in the natural supply or purposely added with treatment. Mono Sodium Phosphate (NaH2PO4):- Same as disodium, but demands more alkali.

TABLE "A"

SOLUE	LE	INSO	LUBLE	INTE	RMED LATE
- Andrews of the Control of the Cont	Solubility Pts. per 100	Compound	Solubility Pts. per 100	Compound	Solubility Pts. per 100
compound	53.	Mg(OH)2	•0009	Ca(OH)2	.185
6018	26.	MgCO3	•01		
5504	60∙	MgSiO3	not recorded		
1612 1 (HCO3)2	indefinite	CaCO3	•0014		
	ńŧ .	CaSiO3	•0095		
(HCO3)2	27.6	Fe(OH)3	.00067		
I	35.7	A1 ₂ 0 ₃	.00015		
504	•30	·	•		
)H	42.	Fe(OH)2	.00067		
2003	7.10		·		
30 ₄	7.35				
2 ^{S0} 4	48.8				

TABLE "B"

	Solubility Cold	. Solubility Hot	Nature of Solubility	Nature of Deposit
Compound	•30	.16	100	adhering
CaSO4	60.	159.	· †	non scale forming
CaCl2	•0014	.0019	†	non adhering
CaCO3	.185	•077	-	adhering
- Ca(OH) 2	26•	74.	+	non scale forming
MgS04 MgCl2	53 •	73.	+	non scale forming
MgC O3	.01			non adhering
Mg(OH)2	.0009	•004	+	non adhering

GRAPHIC ILLUSTRATION OF SOLUBILITY CHARACTERISTICS

a shows decreasing solubility with increase in temperature, or negative character
b shows increasing solubility with increase in temperature, or positive character

SOLUBILITY